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Asymptotic Probabilities in a

Critical Age-Dependent Branching Process

by Howard J. Weiner

ABSTRACT

Let Z(t) denote the number of cells alive at time t in a critical
Bellman-Harris age-dependent branching process, that is, where the mean
number of offspring per parent is one. A comparison method is used to show for
k> 1, and a high-order moment condition on G(t), where G(t) is the cell lifetime

distribution, that 1lim tzP[Z(t)=k] =a, > 0, where {ak} are constants.

t - @

The method is also applied to the total progeny in the critical

process.




Asymptotic Probabilities in a

Critical Age-Dependent Branching Process

by Howard J. Weiner

1. Introduction.

Let 2Z(t) denote the number of cells alive at time t in a critical
Bellman-Harris [2] age-dependent branching process. That is, at time
t = 0, the process starts with one new cell with lifetime distribution

G(t), G(0+) = 0, non-lattice, and

(1.1) G'(t) = g(t),
the density exists, and for some & > 0,

(1.2) | e*%(erae < =
0

At the end of its life, the cell disappears and is immediately replaced by

k new cells with probability Pk.Z 0, with

-]
(1.3) z 4 g 1
k=0
and criticality,
-]
(1-4) 2 kPk = 1.
k=1

Each new cell proceeds identically as the parent cell and independently

of all other cells and the state of the system. Assume that for all integers k,

(1.5) 5 nkpn <w,
n=1

It is the purpose of this note to show that for k> 1,

(1.6) lim t2p[Z(t)=k] ‘= a >0,

t ~®

where {ak] are constants.




The method 1is also applied to total progeny in the critical

process.

2. Integral Equation and Result.

Define the offspring generating functionm, for 0<s <1,

(2.1) h(s) = I p, k
k=0

Define the generating function for Z(t) as, for 0<s <1, all t> 0,

(2.2) F(s,t) = e(s2(%)).

Then [2] F(s,t) satisfies

t
(2.3) F(s,t) = 1 - G(t) + [ h(F(s,t-u))dG(u),
‘o

with F(s,0) = 8.

Theorem. Let Z(t) denote the number of cells at time ¢t in a critical
Bellman-Harris branching process satisfying (1.1) - (1.5). Assume also

that the derivatives of h satisfy
(2.4) 0< h"(l) <=, 0<h(l) <=,
Then for k> 1

(2.5) 11m t2p[2(t)=k] = o >0

t -

where [.k] are constants,

Proof. Consider first the case k = 1, and write for simplicity




(2.6) P(t) = P[Z(t)=1].

From the representation (2.3), derivatives of F(s,t) with respect to

s exist, and note that

(2.7) élig—ﬂl = P(t).

s=0

From (2.7), (2.3) one obtains the relationship
t

(2.8) P(t) =1 - G(t) +j h'(1-Q(t-u))P(t-u)dG(u)
0

and P(0) =1,

where
(2.9) Q(t) = p[z(t) > O].
From [2],
(2.10) e to(e) = a@ant,
where
(2.11) b= rcdc(t).

Assume for simplicity in all the following that

(2.12) T I




The proof will proceed by a number of claims.

Ciaim I. Let R(t) be continuous, R(0) = 0, and satisfy, for t > 0,

that

t
(2.13) R(t) > J h'(1-Q(t-u))R(t-u)dG(u).
<) "0

Then for ail t > 0,

(2.14) R(t) > O.
<)
Proof. Assume the upper inequality of (2.13).

Note first that for all t > 0,
(2.15) R(t) # O.

This follows from (2.13) by assuming there is a to such that R(to) =0,
and a contradiction is clear.

1f the upper inequality in (2.13) is false, (2.15) requires that
R(t) < 0 for t > 0. Then on an arbitrary interval [0,t], assume that R(t)
assumes its minimum at t, < t. Since 0<h'(x) <1, setting t = ty in the
upper inequality (2.13) yields a contradiction. The lower inequality of

(2.13) implies the lower inequality of (2.14) similarly, completing the claim,

Claim II. For some 0 < e < 1, all t > 0, define

1 » <1
(2.16) K(t) =49
=, t321
tz-e -
1 » t<1
(2.17) L(t) = { 1
iR 7 » :2 10

2+e




Then for all t sufficiently large,

t
(2.18) K(t) > 1 - G(t) + J h'(1-Q(t-u))K(t-u)dG(u)
0

and
t
(2.19) L(t) <1 - G(t) + I h'(1-Q(t-u))L(t-u)dG(u).
0
Proof. To show (2.18), note that the right side yields the inequality
t
(2.20) [ n* (1-qee-u)r(e-wd6(w) < 6(e) - 6(t/2)
0
t/2
+ J h'(1-Q(t-u))K(t-u)dG(u).
0
A Taylor egpansion of the rhs of (2.20) yields,

t/2
(2.21) f h'(1-Q(t-u))K(t-u)dG(u)
0

t/2 :
(1-Q(t-u)h" (1) + o(Q(t-u)))K(t-u)dG(u).

)
A Newton binomial expansion applied to the rhs integrand of (2.21)
using (2.10), Theorem 4, p. 406 of [3], (2.16), and that p = 1 yields that

the rhs of (2.21) equals




t/2
(2.22) jo it +o(:—1u))—9ﬂl'l—

t-u (t_u)Z—e

1 ftlz Y G TR [
2-¢ 2-¢ 3-¢ 3-¢
t 0 u t t

(L ==)

t/2
[T+ =22y odyyac(w) - =% + o(c;‘e)

t2"€ Y9 ¢

2-¢) __2

( 1
= + + of )
t2--e t3-e t3-e t3-e

1
<
tz-c

for all t sufficiently large. In view of (2.20), (1.1), this suffices

for (2.18), and (2.19) follows similarly.

Claim IITI. For 0 < e < 1, and all t sufficiently large,

1 1
(2.23) :ﬁ < P(t) <-t—2—_—c .

Proof. This follows from Claims I and II, where R = K - P, for example.
Claim IV. Let R(t) satisfy

t
(2.24) R(t) =1 - G(t) + I h'(l-Q(t-u))R(t-u)dGO(u),

0

with R(0) = 1, where Q(t) is the probability of non-extinction for the process

with lifetime G(t), and

(2.25) 1-6,(t) = . s




e

Then ag t —= ®,
(2.26) R(t) ~—€2-

for some constant c > 0.

Proof. Write (2.24) as

t

(2.27) R(t) =1 - G(t) + et Joh'(l-Q(u))R(u)eudu.
Differentiating, with respect to ¢t,

(2.28)  R'(t) = -g(t) + (1-G(t)-R(t)) + h'(1-Q(E))R(EL).
Then, expanding h in a Taylor series, one obtains

(2.29) R'(t) + 2 R(t) = £(t)
where

(2.30) £(6) = 1 - G(e) - g(&) + E5LAPEIRE) + () - FrgpzIR(E),

with 1 - Q(t) < # < 1. In view of (1.1), (1.2), (1.5), it follows from

Theorem 4 of [3], p. 406, that

(2.31) @) - gy = 05,
t




An analysis similar to that in Claims I - III yields that for

0<e<1, for t sufficiently large,

1

cz-e

(2.32) < R(t) <

1
t2+e
Then (1.1), (2.31), (2.32) used in (2.30) imply that

(2.33) e2¢(e)

is integrable with respect to Lebesgue measure on the positive line.

To solve (2.29) for t 1large, let

(2.34) Q(t) = t2R(t).
Then (2.29) becomes

(2.35) Q' (t) = t2£(e).

For fixed to > 0, one then obtains

=
(2.36) ace) - q(e) = | €2ece)a
to
or
(2.37) R(t) ~55
t

for t sufficiently large, and ¢ > 0, completing this claim.




Claim V. let

ot
(2.38) T(t) =1 - G(t) + j h'(1-Q(t-u))R(t-u)dG(u).
0

Then, ags t — =,
(2.39) e2|1(t)-R(t) | ~ 0.
Proof.
t/2
(2.40)  |T(t)-R(B)]| < 'J h' (1-Q(t-u))R(t-u) (dG(u)-dG_(u)
0

+ G(t) - G(t/2) + Go(t) - Go(t/Z).

A Taylor series and Newton binomial expansion on the right side integrand

of (2.40) yields

C

-
|
\

-t/ : \
(2.41) | z[l-Q(t-u)h"(l) + Qz(c-u)h"'(k(t-u))] $ of—d 2)}<§c(u)-dco(g;

0 “(t-u)? (t-u)
where

(2.42) 1 - Q(t-u) < k(t-u) < 1,

and expression (2.41) equals
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(2.43) _i':/2[1 T o(t—}-—u)} [ s % u( 1 2\)] (dc(u)-dco(u)>

(t-u)? (t-u)

= j;lz[l - %(1 + %) + o(—tl-)] [—fi + o(%)] <dG(U)-dGo(u)>

= o(t™ %),

for t sufficiently large, using that

] (- -]

b= Joudc(u) = JOUdGo(u) =1,

This completes Claim V.
The proof of the theorem for P(t) may now be completed.

Define the iterative scheme, for n > 0

t
(2.44) P(n+1)(t) =1 - G(t) + foh'(1-Q(t-u))P(n)(c-u)dG(u),

and let

(2.45) P(O)(t) = R(t).
Then from (2.38), it follows that

(2.46) P(l)(t) = T(t).

Claims IV and V imply that, for 't large,

c c
(2.47) P(o)(t) ok and P(l)(t) aces

t t
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('
An induction argument along the lines of Claim V establishes that,

for large ¢,
c
2.48 P E) mee
(2.48) m® ~ 3

Note that for n > O,

t

(2.49) P(t) - P(n+1)(t) = foh'(l-Q(t-u))(P(t-u)-P(n)(t-u))dG(u).
Denote
(2.50) B,(E) = B(E) - Py (E),

then from (2.49),

t
2.51) |8, (®)] < folAn(c-u)ldc(u) < |8 16, (0,

th

where * denotes convolution, and Gn(c) is the n convolution of G with

itself.

Let {Xi] denote I.I.D. random variables, with distribution fumction G(t).

Set
n
(2.52) s, ® iflxi.
Then
(2.53) G, (t) = P[S < t] =P[S,-n< t-n],
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and if one takes n> t, by (1.2) and Chebyshev's inequality,

Var Sn
(2.54) G_(t) < = 5
- (n-t)%  (n-t)?

Also,
t/2
(2.55) |8 | * 6 (6) < 6(e) - 6(t/2) + fo |P(t-u)-R(t-u) |dG_(u)

and (1.2), Claims III, Iv, and (2.54) yields that

(2.56) 8| * 6 () s 52y s
- t -e(n-c)

where K 1is a constant.

For fixed large t, let

1+€

(2.57) n> [t ).

This suffices for the proof of the theorem for P(t) = P[Z(t) = 1].

For k > 2, note that

(2.58) k!P[Z(t)=k] = k!P (t) ..a:’séiz.'il

s=0

Then (2.58) applied to (2.3) for k = 2 yields

1 t 2 t
(2.59) Pz(t) - joh"(l-Q(t-u))P (t-u)dG(u) +-Joh'(l-Q(t-u))Pz(t-u)dG(u).




-t
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Since the theorem is true for P(t), then as (2.59) is of the same

form as (2.8), a similar analysis as that used to establish the result for

P(t) also establishes it for Pz(t). Assume the result true for Pk(t), k < n,

Applying (2.58) to (2.3) for k = ntl yields an equation of the form

t
(2.60) Pm_l(t) = fn-i-l(t) +Joh'(I-Q(t-u))Pm_l(t—u)dG(u)

where the induction hypothesis yields that

(2.61)

£(t) = o(t™Y).

In view of (2.61), equation (2.60) is of the same form as (2.8), and

the analysis for P(t) applies to Pn+1(t), yielding the theorem,

Remark.

This result is known for the critical discrete-time or

Galton-Watson process. See [2] Ch. 1, for example. It may be possible

that a series of comparison sequences of the type given in (2.44), (2.45)

relating the critical Bellman-Harris process with a corresponding critical

Galton-Watson process could yield this result.

i Total Progeny.

For another application of the method, let

(3.1)

N(t) = total number of progeny born by t in a critical age-

dependent branching process with ® > h'(1) = E:_l kpk > 0.

Denote, for 0 < s <1, t> 0

(3.2)

H(s,t) = E(s" (%)) = £h., PIN(E)=kle®,




sl
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Then (e.g. [4), p. 394)

t
(3.3)  H(s,t) = s|1 - 6(&) + | h(H(s,t-u))dc(u)}.
‘o
Since, for k> 1,
(3.4) ﬁ%ﬁl = KIP[N(E)=k] = kiQ,(t)

ds 20

one may apply (3.4) to (3. 3) to obtain the limiting values of

PIN(t)=k] = Q,(t).
For k = 1, 2 one obtains, since H(O,t) = 0, that

t
(3.5) Q@ (t) = 1-6(t) + Jroh(O)dG(u) ~py WEt-e,

t/2 t
(3.6) Qz(t) =Io +I /Zh'(O)Ql(t-u)dG(u) = Pgp, as t =@,
t

Similarly, by induction and an application of Leibniz' lemma for successive
differentiation, the limiting values of the [Qk(t)] may be obtained. This
result is implied by a representation essentially as that in [1], pp. 275-276.
No assumptions on higher moments of G are required, but all moments of

h(s) are needed in this approach.



[1]

(2]

(3]

(4]
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